
1

1 Introduction

1.1 Minimal requirements
CeeBot requires an up-to-date and powerful computer. It is particularly important to have
a good 3D graphic adapter for maximum performance.

 o 300 MHz CPU, 64 Mb RAM
 o 3D graphic card with 16 Mb RAM
 o 100 Mb free disk space
 o Windows XP, 2000, ME, 98 or 95
 o DirectX 8 (If necessary, CeeBot will install DirectX 8)

Recommended graphic cards :
 o nVidia GeForce 2, 3 or 4
 o Matrox G400, G450, G550 or Parhelia
3dfx Voodoo graphic adapters are not officially supported, but they may work (no
guarantee).

Some graphic chips in notebooks will not provide satisfactory performance.

1.2 To install CeeBot
 o Insert the CeeBot-A CD-ROM in the drive

Normally, it should start automatically after some ten seconds or so.
Click Install

If the autorun doesn't start, follow these steps :

 o Double-click My computer
 o Open the D: drive (where D: is the letter of your CD-ROM drive)
 o Double-click Install

The installation process will check if you have DirectX 8a. If this is not the case, you'll be
prompted to install it.

If you have a previous version of CeeBot, a new installation in the same folder will
overwrite all data, saved games or programs.

1.3 To uninstall CeeBot
 o Double-click My computer.
 o Double-click Control panel.
 o Double-click Add or Remove programs.
 o Double-click CeeBot-A in the list.

2

2 First approach
In this section, we're going to tke a close look at the second exercise. The detailed
explanations will be found in the follwing chapters. This is your very first contact, to help
you get familiar with CeeBot.

The first thing CeeBot needs is the
player's name. It is better if each player
gives a separate name, because CeeBot
saves your programs and keeps track o
your progress.
So just type in your pseudo or name and
it will then appear in the list. You can
select it and click OK.
Then click

CeeBot now lists the various exercises.
The left column shows the different
chapters, and the right column is the list
of the exercises in the selected chapter.

The tick means the exercise has been
done successfully.

The exercises are progressively more
difficult. We suggest you try them in that
order, even though this isn't compulsory.

Choose « 1: Basics » and « 2: The
straight line », click «Play».

The green text at the top of the screen
asks you to press « F1 » to check your
SatCom. That's where you'll find all the
instructions you need to complete the
exercise.

You can also press this button, at the
bottom of the screen :

3

Read this carefully, as it explains exactly
what you must do. When you've finished,
press the button in the bottom left corner.

If necessary, you can come back to this
screen at any time by pressing « F1 ».

You can tell the exercise bot is already
selected by the orange icon in the top left
corner. If this wasn't the case, all you
need to do is to click it.

You can also click on the robot itself.

Select the first program in the list. Each
bot can have up to 10 programs. This can
be handy when you're testing different
solutions. All these programs are saved
automatically in each player's profile.

Program nr 4 is the solution so you'll
never be stuck. But try not to give in too
soon!

To enter the program editor, click {..}.

The editor comes up with an empty shell
ready for you to write your new program.

The text cursor is between the braces.

Do not alter the first line or the braces.

4

Your job is to draw a red line 20 meters
long, right up to the blue cross. Your first
instruction is to lower the virtual red pen :

pendown(Red);

Make sure you type a capital "R" for Red.
The rest is in lower case.

Notice the ; at the end of the instruction.

Now you need a second instruction telling
the bot to move forwards 20 meters. Your
program will be easier to read if you go to
the next line.

move(20);

Don't forget the ;

Click OK

If you've made a mistake, it will be
highlighted in blue, and a message will be
displayed at the bottom of the screen.

In this example, we forgot the ; at the end
of the first line.

If everything is correct, when you click OK
the editor is closed.

Click this icon to run your new program.
The robot should drive up to the blue
cross, leaving a red trail behind.

Congratulations, you've just completed
your very first program.

5

3 Main menu

3.1 Exercises

In this part of CeeBot-A, you can learn how to program the bots, even
if you don't know anything about programming. The exercises are
gathered into chapters, and progressively introduce the basic concepts
of programming in a structured and object-oriented language. You can
do the exercises in any order, but it's better to start with the easier
ones.

3.2 Challenges
Each challenge is a mission you must try to fulfill. You need a pretty
good knowledge of the CeeBot programming language to succeed.

Challenges are a good way of checking the skills acquired in the programming
exercises.

3.3 Options
Click « Options » to access various settings separated into 5 categories.

3.3.1 Display
The first time you run CeeBot, it is set to use a 640 x 480 x 16 display. On many
computers, you can get a much better graphic result by changing the default settings.

Drivers:
It's best to choose a HAL driver (Hardware Abstraction Layer), and avoid "Emulation" or
"T&L" drivers.

Resolution:
The first and the second figure stand for the size of the image on your screen.
The third number influences the number of colors used:

6

16 bits will display 65,000 colors, whereas 32 bits will display 4 million colors. The higher
you set these parameters, the more detailed the scene will be on the screen. However,
high parameters need a lot more processor and graphic power, and the frame-rate will
be lower.

To find the best settings for your computer, we suggest you start off with 640 x 480 x 16
and climb slowly higher. Most modern graphic cards support at least 1024 x 768 x 16.

If the display seems to be a little jerky, try a lower quality.

? Full screen
Normally CEEBOT runs in full screen mode, whatever resolution you choose. If you
deactivate this flag, CeeBot will be displayed in a fixed size window of approximately
640 x 480 pixels.

[Apply changes]
Hit this key to use the new settings.

3.3.2 Graphics
If the game is too slow, or if the frame-rate is too low, you can tune down some of the
graphic options. Obviously, the higher the settings the more beautiful the game!

Number of particles (0% - 200%)
Particles are used to simulate dust, smoke, fire, explosions, etc.

Depth of field (50% - 200%)
This feature determines up to what distance the scenery is displayed. This distance
varies from planet to planet. A high value close to 200% allows you to see very far, but
requires a powerful 3D graphic card.

Details (0% - 200%)
Sets the visual quality of 3D objects according to their distance.

Number of decorative objects (0% to 100%)
Sets the number of purely ornamental objects like plants, trees, crystals, etc.

7

4 The screen
This is what the screen looks like during an exercise :

1 Summary of available robots and buildings
2 Control panel of the selected item
3 Mini map
4 Access to the menu
5 Temporary messages

4.1 The summary

The top of the screen displays a summary of the robots and buildings in the exercise.
The currently selected item shows up in orange. When a robot is running its program,
the frame of the corresponding icon flashes.

You can select an item by clicking an icon, or by pressing the « Tab » key.

At the beginning of the exercise the astronaut and the robots are displayed. Click the
arrow to show the buildings. Click again to switch back.

8

4.2 The control panel
The bottom of the screen displays all the controls of the selected item. The buttons will
therefore be different if you’ve selected the cosmonaut, a robot or an exchange post.

4.2.1 The ten programs

The left bottom corner gives access to 10 program
slots for each robot. The 4 th program usually is our
suggestion for the solution of the exercise. Use the
scroll bar to access programs 4 to 10..

Launch or stop the execution of the selected program.

Launch the built-in program editor for the selected program (see section
Erreur ! Source du renvoi introuvable.). When you edit a program, the game
pauses so you can take all the time you need to modify programs.

4.2.2 The SatCom
The SatCom is a watch-like apparatus the cosmonaut wears on his wrist. It is used to
communicate with the main operating center and displays all information and data about
the exercise (see section 5).

Click the H icon or press « F1 » to activate the SatCom and display the object
of the exercise.

Click the [] icon to activate the SatCom and display information about the
selected item.

4.2.3 The camera
You can change the viewpoint of the camera by clicking this button or by
pressing the space bar of your keyboard. Usually this switches between a rear
sight and the onboard camera.

4.2.4 Reset
This button sets the items and surroundings to their initial state. Any program
you wrote won’t be modified. Use this feature when you want to change and run
your program from the beginning again.

4.2.5 Gauges
Shows the state of the selected object. From left to right: energy level of the
power cell, the shield level and the jet’s temperature (only for flying robots and
the astronaut).

9

4.3 The mini map
The mini map in the lower right corner offers an overview of the
situation. The darker the zones, the lower the altitude. Robots are
yellow, buildings are blue and enemies are green.

Enemies are only displayed if a radar is available. When you pass
over an object on the mini map, the name of the object is shown in
a small popup window. You can click on an object on the mini map
to select it.

The slider on the left side of the map allows you to zoom in or out.

4.4 The menu
 If you click this button in the top right corner of the screen, the menu is
displayed:

Continue Continue the current exercise.

Options Access certain game options. You don’t have access to all options
from here. If you want to have access to all options use the
Options button of the main menu (see section 3.3).

Restart Abort the current exercise and restart from the beginning.

Abort Abort the current exercise.

5 The SatCom
The SatCom is a very crafty instrument that displays all the instructions for the exercise.
It also holds information about the CeeBot programming language.

10

It works rather like an Internet browser. Whenever a word is underlined, you can click it
to display the corresponding page.

Previous page.

Next page.

Display the page that came up when you turned the SatCom on.

Copies the highlighted characters to the clipboard. You can use this feature
to copy all or part of a program and paste it into the editor (see section
Erreur ! Source du renvoi introuvable.).

Displays the instructions for the current exercise. « F1 » always accesses
this page directly.

Displays overall help for the CeeBot programming language. You’ll find
detailed explanations for each instruction. « F2 » always accesses this page
directly.

Turns the SatCom off and closes the window.

If one of the icons described here is gray, it can’t be used in the current context.

6 Programming
All the robots are programmable. In some exercises, one of the robots is pre-
programmed and cannot be accessed. For instance in exercise « 4.4: Tom thumb ».

6.1 Program editor
To enter the program editor proceed as follows:

 o Select a robot
 o Choose one of the 10 program slots in the bottom left corner of the screen
 o Click the « Edit the selected program » {..} button

11

During program edition the
game is paused. If you
move the mouse pointer
close to the left or the right
edge of the screen, the
camera will rotate. If you
move the mouse pointer
close to the upper or the
lower edge of the screen,
the viewpoint moves forward
or backward. Use this
feature to have a good look
at the surroundings. It can
be necessary to reduce the
editing window.

 Reduced size, to reduce the window to a bar at the bottom of the screen.

 Maximum size, to enlarge the window to full screen.

 Close, equivalent to « OK ».

If you enter the program editor while the program is being executed the game is not
paused but you can observe the progress of the program (see section 6.1.11).

The program editor window can be moved by dragging the title bar. You can also
change its size by dragging the edges or the corners. Next time you call up the editor, it
will be exactly as you left it.

The keywords of the language are displayed in different colors:

Color Kind Example

Orange Instruction aim, fire, turn, goto, while, etc.

Green Variable type object, float, int, etc.

Red Constants, Category TitaniumOre, AlienAnt, etc.

When the cursor is on a keyword, the status bar at the bottom of the program editor
window displays the word and some information. You can then click on the status bar or
press « F3 » to bring up the SatCom , which will display further information.

You can double click a word to select the whole word. Shift-arrow also selects text. Ctrl-
arrow moves word by word and Shift-Ctrl-arrow selects text word by word just like any
standard editor. The usual Ctrl-X, Ctrl-V, Ctrl-C shortcuts for copying and pasting text
are also available.

12

6.1.1 New
 Clears the whole program and creates an empty skeleton program :

extern void object::New()
{

}
New is the default name of the program. You can change it to whatever you like, but you
musn’t use blank spaces or special characters, only letters and digits. For example
Search, BringTitanium, ComeHome, etc.

Note: You can revert to the previous situation by pressing Ctrl-Z or by
clicking the Undo button (see below).

6.1.2 Open and save
All programs you create are automatically saved within the mission or the
exercise. On the other hand, if you want to reuse a program in another
mission you must save it explicitly.

Private The program is saved in a private folder attached to the current player.

Public The program is saved in a public folder and will be available to all other
players.

The name of the folder where the program will be saved appears in the title bar of the
Save dialog. For example, Savegame\Player1\Program\ means that the program will
be saved in c:\Program Files\CeeBot-A\Savegame\Joueur\Program\ (assuming
CeeBot has been installed in the folder c:\Program Files\ CeeBot-A\.

Shortcuts: « Ctrl+O » and « Ctrl+S ».

6.1.3 Undo
Cancels the last modification. You can Undo the 20 last modifications.

Shortcut: « Ctrl+Z ».

6.1.4 Cut, Copy and Paste
Cuts or copies the selected text to the clipboard. If no text is selected,
the whole line will be taken. The contents of the clipboard can be
pasted into the program you are editing.

Shortcuts: « Ctrl+X », « Ctrl+C » and « Ctrl+V ».

6.1.5 Font size
Use this slider to change the font size for the editor and the SatCom.

13

6.1.6 SatCom: Instructions
Shows information about the goal of the mission or the exercise.

Shortcut: « F1 ».

6.1.7 SatCom: Programming help
Shows general information about programming robots. Use the hypertext links
(underlined in blue) to navigate through the pages.

Shortcut: « F2 ».

6.1.8 OK
Compiles the program and quits the editor. If there is a syntax error in your program, the
error is shown and an appropriate error message is displayed in the status bar.

6.1.9 Cancel
Quits the editor without compiling but all modifications are saved.

6.1.10 Compile
Compiles the program without quitting the editor. This is useful to check your
program for syntax errors.

6.1.11 Execute/stop
Starts or stops program execution without quitting the editor. This is useful for
debugging purposes as you can follow the progress of your program. If the button
on the right side depicts a standing man, the program will be executed step by

step.

Note: During program execution the content is displayed in orange and you cannot
modify the program.

6.1.12 Pause/continue
Switches from step by step execution to continuous execution and back.

6.1.13 One step
Executes the next instruction in step by step mode. The lower part of the program
editor shows the contents of the different variables which change during the
progress of the program.

14

6.2 The CeeBot programming language
The CeeBot programming language is very close to C++, C# and Java? . It has been
designed specially for CEEBOT and is very well adapted to learning. In this manual, we
only describe some very simple examples. For a more complete description, use the
SatCom by pressing « F2 ».

The CeeBot language is case sensitive, for example, Radar is not the same as radar.

Each instruction must be terminated by a semicolon ";".

Comments start with // and end at the end of the line.

6.2.1 Instruction Radar
With this instruction, you can look for objects like enemies, bots, buildings or raw
material.

Write the name of the object that you are looking for between brackets. Put the result in
a variable of the type object. Here is an example that looks for the closest ant:

// At the beginning of the program:
object item; // variable declaration

// Look for the closest ant
item = radar(AlienAnt);

6.2.2 Instruction goto
goto() instructs the bot to reach a given position.

The most current use consists in moving the bot to an object located with the instruction
radar(). If the information returned by radar() has been stored in a variable, write
the name of the variable followed by .position in order to get the position of the
object. Here is an example of a program that looks for a titanium cube and goes to its
position:

 object item;
 item = radar(Titanium);
 goto(item.position);

6.2.3 Instructions grab and drop
The instruction grab()tells the bot to use its operating arm to grab an object located on
the ground, on the platform of a building or on the power cell location of a bot. The
instruction drop() on the other hand instructs the bot to put whatever the operating arm
is carrying on the ground, on the platform of a building or on the power cell location of a
bot.

After finding titanium in the previous example, this is how to tell your bot to pick it up
and put it down 5 meters further:

 grab(); // grab the object
 move(5); // move forwards 5m
 drop(); // drop it

15

6.2.4 Instruction fire
Use this instruction to fire the bot's onboard cannon. You can specify how long the burst
must last. Generally, this instruction is used to shoot one-second bursts:

 fire(1);

6.2.5 Instruction while
while(){} is used to repeat a set of instructions several times. The most frequent use
of while consists in repeating a set of instructions again and again. In order to achieve
this, write while(true){} and put the instructions to be repeated in braces {}. As an
example, here is a program that repeats the following actions:

?? look for a spider,
?? turn towards it,
?? shoot.

 while (true)
 {
 item = radar(AlienSpider);
 turn(direction(item.position));
 fire(1);
 }
Just execute this program once, and the shooter will kill all spiders around it.

6.2.6 Instruction distance
With distance(,) you can reckon the distance between two positions. If you use
position alone, this gives you the position of the bot that is executing the program. A
variable followed by .position, gives you the position of the object described in the
variable.

Here is a program that moves forward, covering exactly the distance between the bot
and the closest ant:

 item = radar(AlienAnt);
 move(distance(position, item.position));
This is of course pure suicide. Better to stop 40 meters away, in order to be within
shooting range:

 item = radar(AlienAnt);
 move(distance(position, item.position) - 40);

6.2.7 Instruction if
Use if(){} to execute a set of instructions only if a certain condition is true. Write the
condition in brackets (), and the instructions in braces {}.

Here is an example: The bot will shoot only if the target is closer than 40 meters:

 item = radar(AlienAnt);
 if (distance(position, item.position) < 40)
 {
 fire(1);
 }

16

You can also test if an object exists at all. If the instruction radar() does not find the
requested object, it returns the special value null. So you can test if an object does not
exist with the condition (item == null), or test if it exists with (item != null). A
double equal == tests equality, an exclamation mark followed by an equal sign != tests
inequality. Here is a test that will go to load the power cell up only if there is a power
station:

 station = radar(PowerStation);
 if (station != null)
 {
 goto(station.position);
 wait(5);
 }

6.2.8 Instruction motor
The instruction motor(,); sets the speed for the left-hand and the right-hand motor
of the bot. The speed given to the motors will remain constant during the execution of
the next instructions and therefore it is possible to perform a rotation during the
instruction fire();. This will sweep a whole zone with only one burst. Here is an
example that will sweep the zone in front of the bot:

 turn(45); // turns 45 degrees left
 motor(0.5, -0.5); // slow rotation to the right
 fire(2); // fire
 motor(0,0); // stops the rotation
With the left-hand motor turning half-speed forwards and the right-hand motor turning
half-speed backwards, the bot will pivot slowly during the 2-second-burst.

6.2.9 Instruction turn
Use the instruction turn() to instruct the bot to perform a rotation of a certain number
of degrees. 90 degrees is a quarter turn, 180 degrees is a half turn. A positive angle will
perform a counterclockwise rotation, a negative angle means a clockwise rotation. Here
are some examples with turn():

 turn(90); // quarter turn to the left
 turn(-90); // quarter turn to the right
 turn(180); // half turn
In order to turn the bot towards an object found with the instruction radar(), you must
calculate the rotation angle with the instruction direction():

 TheThing = radar(AlienSpider);
 turn(direction(TheThing.position));
After these lines, just fire the cannon, and you’ll have gotten rid of a hostile element.

7 Development team
Daniel Roux, Denis Dumoulin, Otto Kölbl, Michael Walz

EPSITEC SA, Mouette 5, CH-1092 Belmont
epsitec@epsitec.ch
www.epsitec.com

